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The goal posed is: To understand fully those qualitative situations, 
corresponding to possible empirical observations, that can be repre- 
sented faithfully (isomorphically) in some numerical system that 
includes >. The key idea turns out to be a classification of sym- 
metries (automorphisms) of structures which, for highly symmetric 
(homogeneous) ones with representations on the continuum, is very 
simple. It leads to a uniform scheme for finding numerical representa- 
tions. Generalizations are needed for structures of three types: 
non-homogeneous ones, those leading to geometric representations, and 
those leading to random variable representations. 

1. GOALS OF THE MEASUREMENT THEORY ENTERPRISE 

A limited (though not so limited) goal is: To understand fully those 
qualitative situations, corresponding to possible empirical observa- 
tions, that can be represented faithfully (isomorphically) in some 
numerical system that includes numerical inequality, 2. 

Let me unpack these five phrases: 

"To understand fully": means to classify the inherently different pos- 
sibilities and to work out in considerable detail the properties of 
each. 

"Those qualitative situations": means capturing the properties of the 
situation using mathematics that does not presume numbers - it uses 
the concepts of sets and relations. 

"Corresponding to possible empirical observations": means that each 
primitive relation we postulate should potentially correspond to an 
empirical observation. 

"That can be represented faithfully (isomorphically)": means to seek 
representations of each qualitative system that preserve the structure 
in that system; there is to be no gain or loss of information in 
representing the structure. 

*This work was supported by National Science Foundation grant 
IST-8602765 to Harvard University. Final preparation was completed 
while the author was a Fellow at the Center for Advanced Study in the 
Behavioral Sciences with financial support provided by National 
Science Foundation grant BNS-8700864 and by the Alfred P. Sloan 
Foundation. 
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"In some numerical system that includes numerical inequality, 2,": 
means just what it says, and that implies that one of the primitives 
must be a qualitative ordering - reflecting an attribute that varies 
in degree or amount. This restriction to numerical representations is 
why I refer to this as a limited goal. More ambitious goals will be 
cited later. 

A major motive behind the limited goal is the existence of powerful 
analytic techniques - including calculus, functional equations, and 
dimensional analysis - when variables and laws are stated in numerical 
form. I do not intend to suggest that no powerful mathematical 
techniques are available in the absence of numbers, for that surely is 
false. 

A fruitful approach to these general questions is to explore the 
entire range of possible scale types that can arise, where by scale 
type we mean the kind of things S .S. Stevens [l, 21 was talking about 
when he classified measurement representations as (nominal), ordinal, 
interval, and ratio. The origins of Stevens' classification were the 
debates prompted by the physicist and philosopher of science N.R. 
Campbell and the 1930's Commission of the British Association for the 
Advancement of Science which was asked to look into the question of 
whether fundamental measurement is possible, in principle, for 
psychological attributes. The physicists on the Commission concluded: 
No, such fundamental measurement is not possible in psychology. Their 
syllogism was: 

1. Fundamental measurement is possible if and only if there is an 
ordering and an operation of combining that are faithfully 
represented by 2 and +. (Such structures are called extensive). 

2. Psychology has none such. 

3. Ergo, fundamental measurement is not possible in psychology (or 
any science lacking extensive operations). 

The trouble with the syllogism centered on the general hypothesis of 
what constitutes fundamental measurement. No one involved with the 
Commission seemed especially sensitive to counter-examples to this 
view, although I am unclear how they thought representations involving 
averages got into the picture. S.S. Stevens argued that the important 
issue was not the additive representation, per se, but rather the 
comparative uniqueness that the underlying structure imposed on the 
possible additive representations. This uniqueness is described by the 
group of transformations that relate the various representations. 
Recognizing this and taking into account the groups that had arisen in 
practice led to his 1946 classification of scale types - ordinal, 
interval, and ratio. 

These ideas were explored in a Harvard seminar during the early 1940s 
that involved prcminent philosophers of science, mathematicians, and 
physicists. One gains the impression that they brought to Stevens' 
attention the importance in both physics and mathematics of the groups 
of transformations underlying these three scales. 

What is needed to fill out Stevens' point of view? Most succinctly: 
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we need to lay out fully, in terms of a concept of scale type, the 
entire range of possibilities for numerical measurement. This really 
divides into five subprojects. 

(i) We need to know what is meant in general by the concept of scale 
, type, and to characterize all of the possible scale types. In par- 
ticular, why are ratio, interval, and ordinal scales so important, and 
are there other types to be considered? 

(ii) Given a particular scale type, we need to characterize the 
entire set of numerical structures exhibiting that scale type. These 
numerical structures are of interest since they are the only can- 
didates for possible measurement representations. For example, was 
Campbell correct in his belief that <Re+, 2 ,  + > (meaning the positive 
real numbers, Re+, together with their natural order, 2 ,  and addition, 
+) is the sole candidate for ratio scaling of an empirical operation? 

(iii) Given answers to the first two questions, we must seek the 
qualitative (potentially, empirical) regularities that, when satisfied 
by the phenomenon under study, lead to these representations. That 
is, we attempt to axiomatize the qualitative systems corresponding to 
the possible representations? 

(iv) It is also important to explore the extent to which one-dimen- 
sional measurement structures can be coupled with conjoint (factorial) 
ones in such a way as to maintain the structure of units typical of 
classical physics. When 

(a) the one-dimensional structure has an extensive operation, i.e., 
one that can be represented additively, and 

(b) the conjoint structure can be represented multiplicatively, 

then from physics we know that in many cases there is an empirical 
interlock between the two structures leading to a very simple pattern: 
the unit of the conjoint structure is the product of powers of the 
units of the components (for example: energy has the units of mass 
times velocity squared). The main problem is to characterize the 
other situations where this simple pattern is also adequate. 

(v) And finally, given a structure of some scale type, we would like 
to know when a statement formulated either in terms of the primitives 
of the system or in terms of its numerical representation shall be 
judged to be "meaningful," and so is capable of being either true or 
false for that structure. In particular, what philosophically sound 
justifications can be given for the invariance conditions often 
invoked in meaningfulness arguments used in dimensional analysis, in 
geometry, and in discussions of the applicability of statistical 
methods to measurement? 

Historically, these five problems were not worked on in the order 
listed. Early on, the focus was mostly on (iii) - axiomatizations of 
specific structures such as subjective expected utility, probability, 
and conjoint measurement - and on (iv) - the extent to which these new 
structures could, in principle be incorporated into the physical 
system of units. Important results about (i), (ii), and (v) have 



arisen only in the past decade. I will not attempt to deal with (v) - 
meaningfulness - here. 

2. ACHIEVEMENTS IN THE HOMOGENOUS CASE 

A further restriction on the limited goal stems from the fact that our 
understanding is fairly complete only when we restrict ourselves to 
cases where the objects or events to be measured cannot be distin- 
guished one from another by their properties. 

Let me cite some examples where particular entities have distinguished 
properties: 

1. In velocity, let u O v denote the velocity obtained by "adding" u 
to v. According to special relativity, for velocities u,v less 
than light, c, u @ v > u and u O v > v, but u o c = c = c o u. 

2. In probability only the universal event n has the property that 
for every event A, n u A = n, and only the null event $3 has the 
property that for every event A, $3 n A = $3. 

3. In a system with an operation of combining elements, a zero 
element e is that unique element such that for every other 
element x, x O e = e O x = x. 

In each case, one element has a property not exhibited by any other 
element. When that is not the case - when the elements cannot be 
distinguished by their properties, but only by their identity - we 
say the structure is homogeneous. The first achievement was to 
capture in mathematical terms exactly what we mean by the concept of 
homogeneity. This was done by L. Narens in 1981 [ 3 , 4 ] .  It is as 
follows: 

An (ordered) measurement structure is a set of elements with relations 
on it, one of which is an order (technically, a simple order). I will 
simply speak of "structure" for such a relational system. Define a 
symmetry (physicist's term) or automorphism (mathematician's term) to 
be any structure preserving (isomorphic) mapping of a structure onto 
itself. (Examples: Any rotation of a circle about its center. Any 90 
degree rotation of a square about its center. Multiplication of 
lengths by a fixed positive constant.) Then the structure is called 
homogeneous if and only if for each pair of elements in the structure, 
some symmetry takes one element into the other element. 

Example: < Re+, 2 , +  > has as its symmetries multiplication by positive 
real numbers. It is trivially homogeneous: for suppose x > 0, y > 0, 
then y is transformed into x under the symmetry z - x/y > 0 since zy.- 
(X/Y)Y = x. 

It is useful to partition the symmetries into two types: Symmetries 
having no fixed point (no element a that is transformed into itself) 
are called translations. Symmetries with at least one fixed point are 
called dilations. The ?dentity transformation (every point is a fixed 
point) is considered a translation as well as a dilation. 
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Example: for interval scales, the symmetries are the transformations x 
+ rx + s, r > 0; the translations are those with r = 1, i. e. , x + x + 
s. The dilations are those with either r z 1, s z 0 or r = 1, s = 0. 

Let us turn now to the four questions: 

(i) What s c a l e  t y p e s  a r e  p o s s i b l e ?  

Stevens had it nearly right: For structures that 

(a) can be mapped o n t o  the real numbers, 

(b) are homogeneous, and 

(c) are unique in the sense that specifying a fixed finite number 
of values of a representation completely specifies it for all 
elements, 

there are just three possibilities: ratio, interval, and another 
between these two. Nothing else is possible. (This result was gradual- 
ly achieved in a series of papers: L. Narens, [ 3 , 4 ]  and T. Alper, 
[ 5 , 6  ] . ) The transformations available are1 : 

- ratio: x + x + s (S any real) 
- discrete interval: x + k"x + s (k > 0 and fixed, n any integer, 

s any real) 
- interval: x + rx + s (r > 0, s any real). 

(ii) What numer ica l  s t r u c t u r e s  go w i t h  t h e  s c a l e  t ype s?  

(a) For numerical structures with a binary operation (addition, 
averaging a examples), the answer is fully known (Luce and 
Narens [ 7 ] ) .  For example, the most general interval scale 
operation is: 

This leads to a version of utility theory somewhat like, but somewhat 
different from, Kahnemann and Tversky's [8] prospect theory. It 
handles many of the empirical anomalies, but it has not really been 
directly tested. 

(b) Much more generally, the target representations are a class of 
numeric structures on ~ e +  called r e a l  u n i t  s t r u c t u r e s  that have 
the property that the translations (symmetries with no fixed 
point) appear as multiplication by a positive constant (Luce, 
[9,101). 

(iii) What q u a l i t a t i v e  s t r u c t u r e s  map i n t o  numer ica l  ones? 

The most general answer known for the homogeneous case is any struc- 
ture whose translations act formally like multiplication by positive 
constants [lo]. In prdctice, this means that for a specific structure, 
one should attempt to characterize and study its translations. If they 
can be shown to be homogeneous and to act like multiplication by a 
constant, then we know the structure has a representation. (Actually, 
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constructing it is something else again.) For example, in structures 
with operations the study of the translations has been done fully. In 
particular, we know the conditions when any structure with a operation 
has a numerical representation, and we can characterize fully those 
structures that are homogeneous. For positive operations (x O y > x 
and > y), a constructive method is known for finding the representa- 
tion (Luce, Krantz, Suppes, and Tversky, [ll]). 

(iv) Fitting into the scheme of physical units 

The basic issue is as follows: Suppose we have a factorial structure - 
an ordering 2 of stimuli with two factors, drawn from two sets A and 
P, respectively. (Physical example: ordering of masses generated by 
containers (A) and substances (P).) And suppose we have a measurement 
structure on one of the factors, A, that has a numerical representa- 
tion, say q .  (Physical example continued: ordinary measure of volume 
of containers.) Under what conditions will the conjoint structure have 
a numerical representation of the form qP$, where p is a constant and 
$ is a numerical mapping of the second factor? 

The general answer is really quite simple (although it took us quite a 
spell to get there). First, the structure on A must relate nicely to 
the conjoint ordering - technically, it is said to distribute in it. 
This means the following: Two n-tuples of elements from A, (al, . . . ,  
an), and (bl, . . . ,bn) , are said to be similar (relative to the given 
conjoint structure) if there are elements p and q in P such that for 
each i - 1,. . . ,n, (ai, p) - (bi, q). The structure on A is said to 
distribute in the conjoint structure if and only if each of its 
primitive defining relations S has the property: if (al, . . . ,  an! is in 
S and (bl, . . . ,  bn) is similar to (al, . . . ,  an), then (bl, . . . ,  bn) IS also 
in S. The second property assumed is that the structure on A has a 
real unit representation, i.e., its translations act like multi- 
plication by a constant. These two conditions along with solvability 
in the conjoint structure force the product of powers representation 
to exist [lo]. 

3. LIMITATIONS ON WHAT HAS BEEN DONE 

Within the limited goal of mapping into the ordered real numbers, the 
major limitation is: Almost all of our strong results are restricted 
to the homogeneous case. They do not apply to systems with either 
upper bounds (e.g., velocity, probability, and quite possibly sensory 
attributes) or zero elements. In particular, we do not really 
understand qualitatively how bounded scales, such as velocity, are 
tied into the system of uriies. Distribution as currently defined does 
not hold in that case. 

In working with non-homogeneous structures, efforts probably should be 
restricted at first to structures, like the examples mentioned, in 
which homogeneity holds on both sides of a single distinguished 
element. I am not sure how difficult it will turn out to be to develop 
an understanding of these non-homogeneous cases. At present we have 
fragmentary results about some of the questions and none about others. 

There are two major directions for expanding the investigations beyond 
the limited goal: 
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(i) Geometric representations 

These clearly are of much interest for psychology, especially as they 
arise both in multidimensional scaling and in cognitive theory, and 
the social sciences more generally. Geometries and their axiomatiza- 
tion form a huge mathematical field. However, many of those results do 
not seem directly relevant to psychology because our empirical 
primitives do not correspond to points, lines, and incidence rela- 
tions. Some axiomatic work was carried out 15 years ago, but the topic 
is far from fully mined. 

(ii) Random variable representations 

Error of measurement is handled only clumsily using numerical repre- 
sentations. And so it is really very difficult to be certain whether 
a body of empirical data reject a particular measurement model. A far 
more satisfactory state of affairs would be representations not into 
numbers but into families of random variables, which in the limiting 
case of no variability would reduce to known numerical models. The 
axiomatization would have to lead to a characterization of the 
distribution functions of the random variables, including of course 
the way random variables relate (e. g. , Z = X + Y in the simplest 
case). 

Despite the fact we have been aware of this need for at least 25 
years, not a single example has been forthcoming. There is to my 
knowledge no axiomatization of any family of random variables - the 
normal, the gamma, etc. These families arise from convolutions and 
asymptotic theorems, not from axiomatizations of properties of the 
families. 

4. CONCLUSIONS 

We have come a long way toward understanding homogeneous structures 
We know a lot about 

(a) the classification of structures by scale type, and 

(b) the properties that an ordered qualitative structure must 
satisfy in order to have a numerical representation. 

Moreover, results in this case are really quite simple and neat; 
however, the proofs so far developed tend not to be easy. 

Much, however, remains to be done including at least the following: 

1. A comparable developnent for non-homogeneous structures, es- 
pecially those that are homogenous on either side of an isolated 
element. 

2. A comparable development, again carried out first for the homoge- 
neous case, leading to geometric representations; this should 
involve primitives suitable to behavioral and social science. 

3. A comparable development, to be carried out first for the homoge- 
neous case, leading to random variable representations. 



FOOTNOTE : 

l ~ h e n  the representation is on the entire real numbers, the trans- 
formations are as shown, the first of which is technically the 
translation group and one should properly refer to the representations 
as forming a difference scale. If an exponential transformation u = 

ex is made, so the representation is onto the positive real numbers, 
then the transformations from one representation to another become 
u-tu, where t = eS > 0. These are the similarity transformations and 
constitute the usual definition of a ratio scale. Analogously, the 
affine transformations of the interval scale become the power trans- 
formations u-tur, and the representations are said to form a log- 
interval scale (because a log transformation takes them into the usual 
interval scale representations). Thus, holding the domain fixed, 
difference and interval scales form a natural pair as do ratio and 
log-interval scales. However, there is some tendency to speak of the 
one parameter case as ratio and the two parameter one as interval 
without regard to the domain, Re or ~ e + .  The greatest danger in doing 
this is to think that the ratio case is the special case of the affine 
transformation gotten by setting s = 0 rather than setting r = 1. 
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